

 SOIUTIO∩·S

Every year, dozens of new genetic etiologies are identified that can cause developmental disabilities.

- In 1996, Opitz et al. (1996) reported more than 750 different etiologies that caused developmental disabilities (DD)
- These genetic disorders caused 33% 50 % of DD!

www.solution-s.ca

Congenital Etiologies

⊘ solution·s

Definitions

Congenital Anomaly : present at birth may be genetic, infectious or environmental in origin, most often it is difficult to identify the exact causes

Genetic condition: result of the dysfunction of one or several genes

Hereditary Illness: Genetic disorder

*Not necessarily contradictory: certain genetic conditions are congenital & others are not (cancer), certain genetic conditions are hereditary (FXS) & others are not (DS, etc.)

Source: http://www.orpha.net/orphaschool/formations/transmission/ExternData/InfoTransmission-Dreamweaver/Transmission.pdf

Congenital Etiologies

SOLUTION'S

Grouped into 3 categories:

- 1. Monogenetic disorder: one gene (can be present on one or both chromosomes) cystic fibrosis, Tay-Sachs disease, sickle cell disease
- 2. **Multifactorial inherited disorder**: combo of small inherited variations i.e.: diabetes
- 3. Chromosome disorder: excess or deficiency of gene located on chromosome i.e.: DS, Fragile x, Prader Willi

www.solution-s.ca

Congenital Etiologies

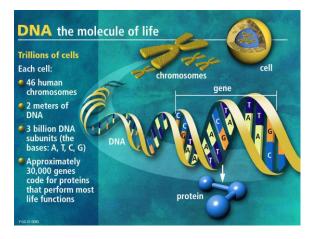
SOLUTION'S

Risk Factors:

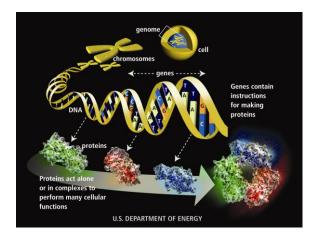
- · Genetics
- Maternal infection: TORCH
- Environmental exposure: Alcohol, pesticides
- Maternal nutritional status: Phenylalanine, Folic acid

www.solution-s.ca

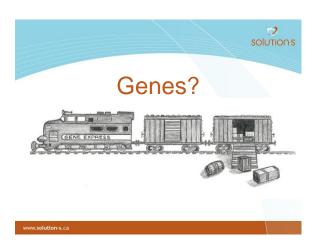
Congenital Etiologies

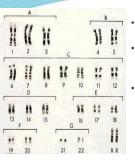

 SOIUTIO∩·S

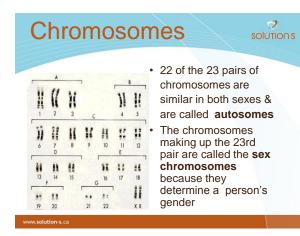
Examples:


Phenylketonuria- mutations in the PAH gene cause PKU (low levels phenylalanine hydroxylase)

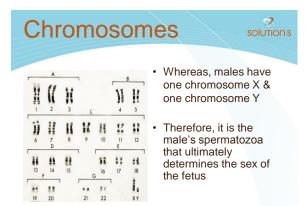
Velocardiofacial- missing segment in individuals with VCFS is 22q11.2.


Fragile X- caused by mutation in the FMR1 gene Cri du chat- 5p syndrome- deletion of p arm of chromosome 5





Chromosomes



SOLUTION·S

- 46 chromosomes organized in 23 pairs
- These chromosomes contain condensed coils of DNA code in the form of genes
- One member of each chromosome pair is inherited from your father & the other from your mother, at conception

2 Chromosomes **SOLUTION'S** In females, both sex В ٠ " 1 1 chromosomes are H alike & are called 5 chromosome X ij ----11 11 -----11 K 12 13 11 -11 16 17 15 16 17 18 11 ** 11 19 20 21 22 XX

Chromosomes 13,3 13.2 12,1 р 12 • Each chromosome has a centromere 11.2 · Shorter section above the centromere is 11.1 called the « p » arm 11.2 12.1 12.2 13 (« p » for petite) · Longer section below centromere is q 21 known as the « q » arm 22 (« q » for queue) 23 · A numeric system identifies all regions 24 along both arms of each chromosome 16

http://www.patient.co.uk/doctor/cri-du-chat-syndrome-pro

Congenital Etiologies

 SOIUTIO∩·S

Grouped into 3 categories:

- 1. Monogenetic disorder: one gene (can be present on one or both chromosomes) cystic fibrosis, Tay-Sachs disease, sickle cell disease
- 2. **Multifactorial inherited disorder**: combo of small inherited variations i.e.: diabetes
- 3. Chromosome disorder: excess or deficiency of gene located on chromosome i.e.: DS, Fragile-X, Prader Willi

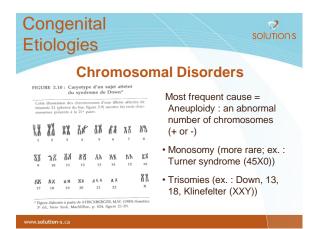
www.solution-s.ca

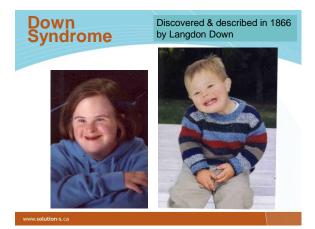
Congenital Etiologies

SOLUTION'S

MONOGENIC DISORDER:

- Mutations in a single gene the Cystic Fibrosis Transmembrane Regulator (CFTR) gene - causes CF
- To develop CF, a child must inherit a defective gene from both parents
- If both parents are carriers, there is a 25 percent chance that each child they conceive will have CF, and a 50 percent chance that the child will be a carrier


www.solution-s.ca

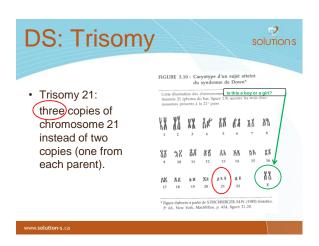


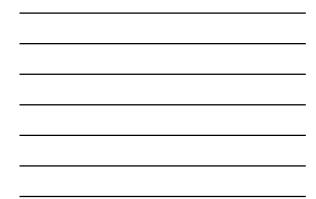
 SOIUTIO∩·S

MULTIFACTORIAL INHERITED:

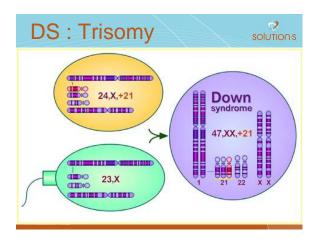
• Breast Cancer- BRCA1 or BRCA2 mutation have a 50 percent chance of inheriting the gene mutation

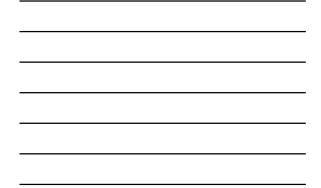
Congenital

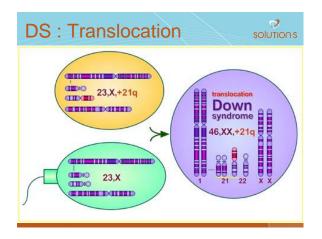

€ SOLUTIO∩·S

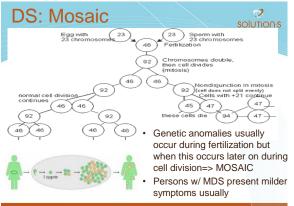

Etiologies

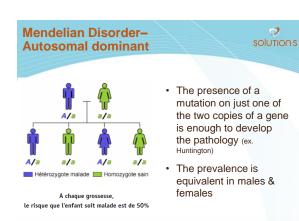
HOW:

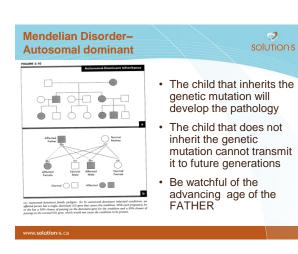

3 genetic ways:

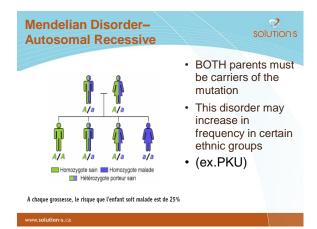

- 95% have trisomy 21 (an extra chromosome 21 in all their cells),
- 3-4% have a translocation form of the extra chromosome (where the extra chromosome 21 is attached to one of a different chromosome pair)
- about 1-2% are mosaic (only some cells are trisomic, the rest are normal)

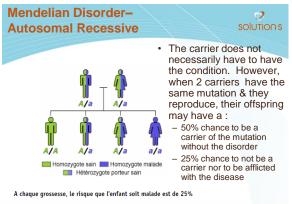


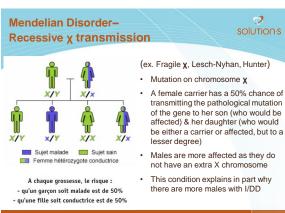


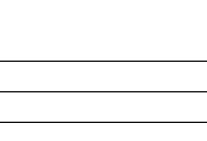


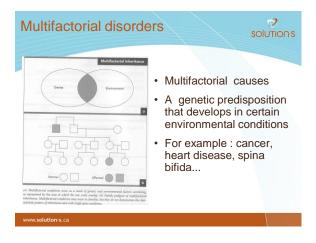



Chromosomal disorders

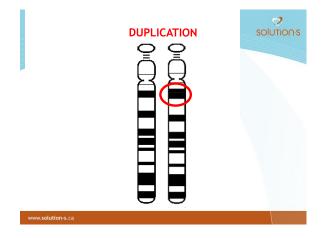

⊘ solution·s

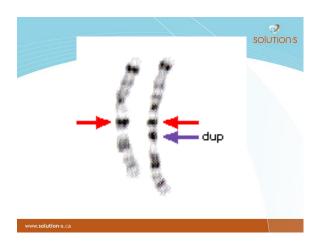

- Women over 35 years of age present a much higher risk of having a child with a chromosomal disorder
- A karyotype can diagnose this condition

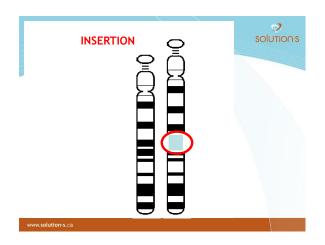




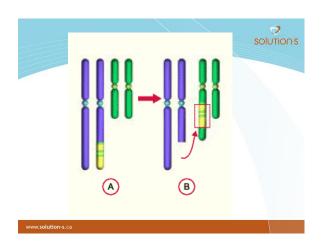
n & they eir offspring to be a imutation lisorder to not be a o be afflicted ase

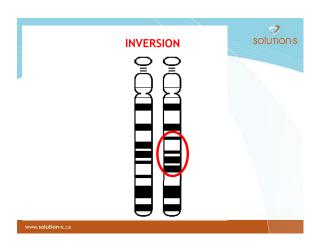


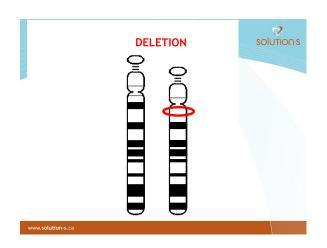


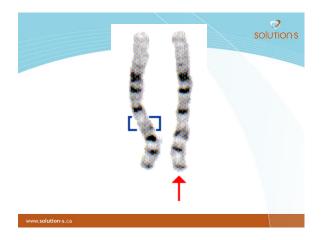

Video: NF2

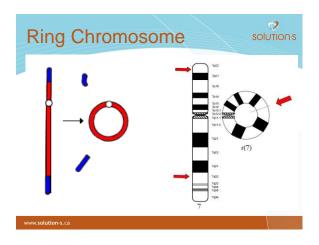
http://www.ygyh.org/nf/inherited.htm





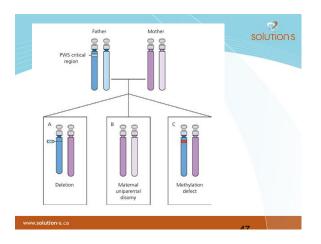




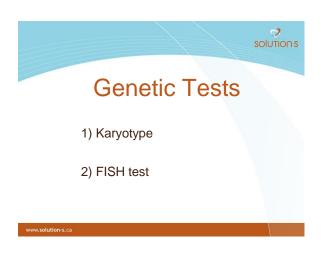


Ri	ng	Chr	omo	son	nes	\geq	SO	⑦
AT A	50	35	\mathcal{N}				J 6	
	6	0	8	o and o	10	11	12	
	13	14 N	15		16	17	18	
14/14/14 C	19 olution-s.c	20	21	22 22		L ×	الله ۲	

The Concept of Parental Imprinting

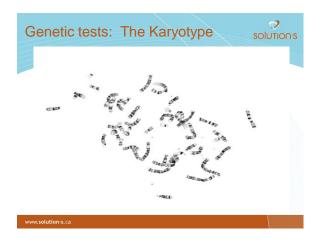

The expression of the pathological condition will depend on whether the pathological gene comes from the mother or the father.

Ex.: Prader-Willi Syndrome or Angelman Syndrome

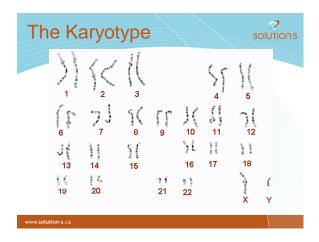

Prader Willi Syndrome is caused by a microdeletion on the chromosome 15, that is inherited from the father (or more rarely when there are two copies of the gene from the mother)

Angelman Syndrome is caused by a microdeletion of the exact same region of chromosome 15, however, this mutation, is inherited from the mother (or more rarely, when there are 2 copies from the father)

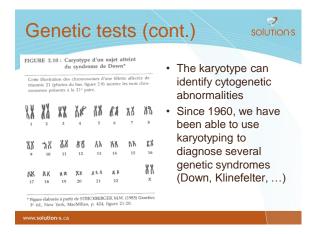
Definition of Karyotype

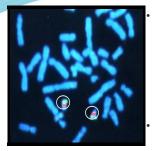

 SOIUTIO∩·S

The American Heritage® Medical Dictionary :


1. The characterization of the chromosomal complement of an individual or a species, including number, form, and size of the chromosomes

2. A photomicrograph of chromosomes arranged accor ding to a standard classification


Copyright © 2007



FISH=Fluorescent In Situ Hybridization

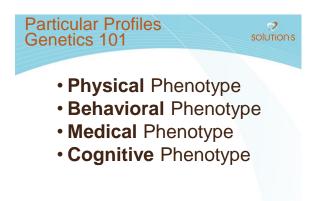
A specific molecular probe, labelled with a bright fluorescent chemical marker is added to a chromosome preparation to find its sequence-specific match at the molecular level Useful in the diagnosis of deletion syndromes

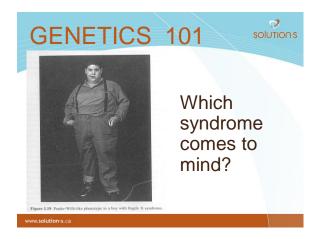
Results of the FISH test for velocardiofacial Syndrome (22q-)

GENOTYPE & PHENOTYPE

2 **SOLUTION'S**

2


- 1972 : William Nyhan proposed for the first time the notion of a behavioral phenotype
- Definition (Dykens, 1995): The heightened probability or likelihood that people with a given syndrome will exhibit certain behavioral & developmental sequelae relative to those without the syndrome



as predisposition to certain health problems: heart disease, strabismus)

 Genotype = A person's genetic makeup (the combination of genes of an organism or an individual)

Dykens, Hodapp & Finucane, 2000

 Important variations - medically, physically, cognitively & behaviorally- are observed in individuals with the SAME genetic syndrome

Why should you test? solutions

- Medical & psychiatric comorbidities
- Behavioral strategies
- Educational strategies
- Psychosocial considerations
- Parental closure
- Interventions to prevent further complications
- · Future genetic risks in families

How using a genetic approach can help you to better understand I/DD

⊘ solution·s

- A : Genetic etiology
- B : Particular profile for each of the syndromes: medically, physically, cognitively & behaviorally
- **A** + **B** = better adapted interventions
- In certain cases, early identification can even prevent the development of deficits (ex. : phenylketonuria, PKU)

